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1. Introduction 

Fatigue is a pervasive condition that affects 

individuals across various domains, particularly in high-

stakes environments such as transportation, healthcare, 

and industrial operations. It can impair cognitive 

functions, reduce alertness, and increase the likelihood of 

accidents. In the context of driving, fatigue is a 

significant contributor to road traffic accidents, with 

studies indicating that drowsy driving is responsible for 

a substantial percentage of crashes. Consequently, 

developing reliable fatigue detection systems is crucial 

for enhancing safety and preventing accidents. 

Traditional methods for assessing fatigue often rely 

on behavioral and physiological indicators such as 

reaction time, eye movement, and heart rate variability. 

While these approaches can provide valuable insights, 

they may not capture the underlying neural mechanisms 

associated with fatigue. Electroencephalography (EEG) 

offers a promising alternative by providing direct 

Abstract: This study presents a method for driver fatigue detection using EEG signals, combining 

an enhanced modified Z-score-based preprocessing technique with a hybrid deep learning model 

that integrates Deep Belief Networks (DBN) and Long Short-Term Memory (LSTM) networks. The 

enhanced modified Z-score preprocessing method effectively reduces noise and outliers in EEG 

data, significantly improving the quality of features for fatigue classification. The DBN component 

is used for unsupervised feature extraction, while the LSTM component captures temporal 

dependencies in the data, enhancing the accuracy of the model. Experimental results showed that 

the proposed model achieved an overall accuracy of 82.41%, a specificity of 65.10%, and an F1-

score of 84.90%, indicating robust performance in classifying different driver fatigue states. These 

findings demonstrate that the DBN-LSTM hybrid model, combined with the enhanced 

preprocessing technique, offers a promising solution for real-time driver fatigue detection, with 

potential applications in critical areas such as driver monitoring systems and industrial safety. 
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measurements of electrical activity in the brain. EEG 

signals reflect various cognitive states and can reveal 

changes in brain activity patterns associated with fatigue. 

This makes EEG an invaluable tool for real-time 

monitoring of mental states. 

Despite the advantages of using EEG for fatigue 

detection, several challenges remain. One of the primary 

issues is the presence of noise and artifacts in EEG 

signals, which can arise from various sources such as 

muscle movements, eye blinks, and external 

electromagnetic interference. These disturbances can 

obscure the underlying brain activity associated with 

fatigue, leading to inaccurate classifications. Therefore, 

effective preprocessing techniques are essential to 

enhance the quality of EEG data before analysis. 

In recent years, advancements in machine learning 

and deep learning have revolutionized the field of signal 

processing and classification. Deep learning models, 

particularly those based on neural networks, have 

demonstrated remarkable performance in various 

applications, including image recognition and natural 

language processing. In the context of EEG signal 

analysis, deep learning approaches can automatically 

learn hierarchical features from raw data without 

requiring extensive manual feature engineering. This 

capability is particularly beneficial for complex tasks 

such as fatigue classification. 

This paper proposes a novel approach that combines 

enhanced preprocessing techniques with a hybrid deep 

learning model consisting of Deep Belief Networks 

(DBN) and Long Short-Term Memory (LSTM) 

networks. The enhanced modified Z-score method is 

employed to preprocess EEG signals effectively by 

normalizing data and detecting outliers. This 

preprocessing step aims to reduce noise and improve the 

quality of features extracted from EEG signals. 

The DBN component of the model serves as an 

unsupervised feature extractor that captures complex 

patterns in the preprocessed EEG data. By leveraging 

multiple layers of stochastic binary units, DBNs can 

learn rich representations that are crucial for 

distinguishing between different fatigue states. The 

LSTM component complements this by modeling 

temporal dependencies within the sequential data, 

allowing the model to recognize patterns over time that 

are indicative of fatigue. 

By integrating these two powerful architectures of 

DBN for feature extraction and LSTM for temporal 

analysis, this study aims to enhance the accuracy and 

robustness of driver fatigue classification systems based 

on EEG signals. The proposed method not only addresses 

the challenges posed by noise and artifacts but also 

capitalizes on the strengths of deep learning to provide a 

more effective solution for real-time driver fatigue 

detection. 

In summary, this research seeks to contribute to the 

growing body of knowledge on driver fatigue detection 

by introducing an enhanced modified Z-score-based 

preprocessing method combined with a DBN-LSTM 

hybrid model. Through rigorous evaluation and 

comparison with existing methods, we aim to 

demonstrate significant improvements in classification 

accuracy and reliability in identifying fatigue states from 

EEG signals. This advancement has important 

implications for applications in driver monitoring 

systems and other fields where maintaining alertness is 

critical for safety. 

 

2. Related Works 

Driver fatigue is a significant contributor to road 

traffic accidents, with studies indicating that it accounts 

for a considerable percentage of fatal crashes globally. 

Research has shown that fatigue can impair cognitive 

functions, leading to slower reaction times and an 

increased likelihood of accidents [1][2][3]. For instance, 

Neubauer et al. highlighted the relationship between 

driver fatigue and automation choice, suggesting that 

fatigued drivers are less likely to engage with automated 

systems effectively [4]. However, their study was limited 

by a small sample size, which may not represent the 

broader population of drivers. Furthermore, the 

physiological indicators of fatigue, particularly those 

derived from EEG signals, have been extensively 

studied. EEG-based methods have been recognized as a 

reliable approach for fatigue detection due to their ability 

to provide real-time insights into the driver’s mental state 

[5][6][7]. Nonetheless, the effectiveness of EEG signals 

can be influenced by external factors such as noise and 

artifacts, which may lead to inaccuracies in fatigue 

classification. 

Recent advancements in machine learning and deep 

learning have further enhanced the accuracy of fatigue 

detection systems. For example, hybrid models 

combining convolutional neural networks (CNN) and 

long short-term memory (LSTM) networks have shown 

promising results in classifying fatigue states based on 

EEG data [8][9]. However, these models often require 

extensive computational resources and may not be 

feasible for real-time applications. Additionally, studies 

have explored the effectiveness of various fatigue 

countermeasures, emphasizing the need for 

comprehensive strategies to mitigate fatigue among 

drivers [10][3][11]. Despite these advancements, the 

challenge remains in developing universally applicable 

solutions that account for individual differences in 

fatigue susceptibility and response. 

The modified Z-score is a statistical method used for 

outlier detection and normalization in various data 

processing applications, including EEG signal analysis. 

This method is particularly advantageous in 

preprocessing EEG signals, as it helps in identifying and 

mitigating noise and artifacts that can obscure the 

underlying patterns associated with fatigue [12][13]. The 

application of the modified Z-score allows for a more 

robust analysis of EEG data by standardizing the signals, 

thus enhancing the reliability of subsequent classification 

tasks [14]. However, the modified Z-score assumes that 

the data follows a normal distribution, which may not 
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always be the case in real-world EEG data, potentially 

leading to erroneous conclusions. 

In the context of fatigue detection, the modified Z-

score can be instrumental in refining the feature 

extraction process, ensuring that only relevant and high-

quality data is utilized for training machine learning 

models [15][16]. This preprocessing step is crucial, as it 

directly influences the performance of fatigue 

classification systems, making it a vital component of the 

overall methodology [17][18]. Nevertheless, the reliance 

on this method may overlook other significant 

preprocessing techniques that could further enhance data 

quality, such as wavelet transforms or independent 

component analysis, which can also effectively remove 

artifacts from EEG signals. 

Deep Belief Networks (DBN) and Long Short-Term 

Memory (LSTM) networks are two powerful 

architectures in deep learning, particularly suited for 

sequential data analysis such as EEG signals. DBNs are 

composed of multiple layers of stochastic, latent 

variables, which can learn to represent the underlying 

structure of the data [13][18]. They have been effectively 

employed in various applications, including driver 

fatigue detection, where they can capture complex 

patterns in the data that traditional methods may 

overlook [17][19]. However, DBNs can be 

computationally intensive and may require extensive 

tuning of hyperparameters, which can be a barrier to 

practical implementation. 

On the other hand, LSTM networks are specifically 

designed to handle long-range dependencies in 

sequential data, making them ideal for time-series 

analysis [9][20]. The integration of LSTM with other 

models, such as DBNs, has been shown to enhance the 

classification accuracy of fatigue states by leveraging 

both the hierarchical feature extraction capabilities of 

DBNs and the temporal dynamics captured by LSTMs 

[8][21]. This hybrid approach has been validated in 

several studies, demonstrating its effectiveness in real-

time fatigue detection systems [9][20][22]. However, the 

complexity of these hybrid models can lead to 

overfitting, particularly when trained on small datasets, 

which may limit their generalizability to unseen data. 

The integration of advanced preprocessing 

techniques such as the modified Z-score with 

sophisticated deep learning models like DBN and LSTM 

presents a promising avenue for enhancing EEG signal 

analysis in the context of driver fatigue detection. While 

the growing body of research underscores the importance 

of these methodologies in developing robust and reliable 

systems aimed at improving road safety, it is crucial to 

address the limitations identified in previous studies. 

Future research should focus on optimizing these models 

for real-time applications, ensuring their adaptability to 

diverse driving conditions and individual differences in 

fatigue susceptibility. 

 

3. Methodology 

This section outlines the comprehensive 

methodology employed in this study, detailing the 

preprocessing of EEG signals, feature extraction, and the 

implementation of the DBN-LSTM hybrid deep learning 

model.  

 

3.1 EEG Dataset 

The dataset utilized in this research was sourced 

from an online database established by a prior researcher 

[12]. It comprised EEG recordings from twelve healthy 

male participants aged between 19 and 24, who engaged 

in a driving simulator task lasting up to two hours. EEG 

data were collected from eight designated channels (O1, 

O2, Fp1, Fp2, P3, P4, F3, and F4) using a Neuroscan 

device equipped with thirty electrodes, operating at a 

sampling frequency of 1000 Hz. The investigation was 

structured into two distinct phases: a five-minute normal 

state followed by a five-minute fatigued state. 

Participants self-reported fatigue after driving for a 

duration of 40 to 100 minutes. The study employed the 

ZY-31D driving simulator, which features a wide-screen 

display composed of three 24-inch screens. The driving 

environment was generated using the Peking 

Ziguangjiye program ZG-601, which facilitated a low-

traffic density scenario. 

 

3.2 EEG Signal Preprocessing 

EEG signal preprocessing is a critical step that 

directly impacts the quality of data used for fatigue 

classification. The proposed preprocessing method 

utilizes an enhanced modified Z-score technique, which 

includes several key components. To ensure that EEG 

signals are on a comparable scale, Z-score normalization 

is applied. This process transforms the raw EEG data into 

a standardized format by subtracting the mean and 

dividing it by the standard deviation. The resulting 

normalized values provide a clearer representation of 

brain activity and facilitate subsequent analyses. 

The presence of outliers can significantly distort the 

analysis of EEG signals; therefore, the enhanced 

modified Z-score method is employed to identify these 

anomalies. This technique calculates a modified Z-score 

for each data point, which is less sensitive to extreme 

values than traditional Z-scores. Data points exceeding a 

predefined threshold are flagged as outliers and 

subsequently removed from the dataset. Additionally, 

EEG signals are susceptible to various types of noise, 

including low-frequency drift and high-frequency 

artifacts. A bandpass filter is applied to remove 

frequencies outside the typical range of interest (0.5 Hz 

to 50 Hz). This filtering process helps eliminate 

unwanted signals, ensuring that only relevant brain 

activity is retained for analysis. 

 

3.3 Feature Extraction 

Once the EEG signals have been preprocessed, 

relevant features must be extracted to facilitate effective 

classification. The feature extraction process 

encompasses multiple techniques. Basic statistical 

measures are computed from the time-domain 

representation of the EEG signals, including mean, 
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variance, and standard deviation of the signal amplitudes. 

The mean provides insight into overall brain activity, 

while variance and standard deviation quantify 

fluctuations in mental states. 

In addition to time-domain features, frequency-

domain features are extracted through power spectral 

density (PSD) analysis using Fast Fourier Transform 

(FFT). This analysis converts time-domain signals into 

their frequency components, focusing on key frequency 

bands relevant to fatigue detection which are delta (0.5-

4 Hz), theta (4-8 Hz), alpha (8-12 Hz), and beta (12-30 

Hz). By analyzing power distribution across these bands, 

we can gain insights into cognitive states associated with 

fatigue. 

To capture dynamic changes in brain activity over 

time, techniques such as Short-Time Fourier Transform 

(STFT) or Continuous Wavelet Transform (CWT) are 

employed for time-frequency analysis. These methods 

provide a time-frequency representation that reveals how 

different frequency components evolve throughout the 

recording period, allowing for a more nuanced analysis 

of fatigue-related patterns. 

 

3.4 Hybrid Deep Learning Model: DBN-LSTM 

The core of this study lies in the development of a 

hybrid deep learning model that integrates Deep Belief 

Networks (DBN) and Long Short-Term Memory 

(LSTM) networks for fatigue classification. DBNs 

consist of multiple layers of stochastic hidden units that 

allow them to learn hierarchical representations from 

data. In this study, unsupervised pre-training is 

conducted using contrastive divergence to capture 

complex features from the preprocessed EEG signals 

without requiring labeled data. After unsupervised pre-

training, supervised fine-tuning is performed using 

labeled fatigue data to optimize the weights and biases 

for improved classification performance. 

LSTMs are designed to handle sequential data 

effectively by maintaining long-term dependencies. The 

LSTM component processes sequences of features 

extracted from the DBN output, allowing it to recognize 

temporal patterns indicative of fatigue states. Utilizing 

gated mechanisms such as input, output, and forget gates. 

LSTMs manage information flow within the network, 

enabling them to retain relevant information over 

extended periods while discarding irrelevant data. 

 

3.5 Model Training and Evaluation 

The DBN-LSTM hybrid model undergoes rigorous 

training using labeled datasets containing various levels 

of fatigue states. The training process employs a 

backpropagation algorithm with an appropriate loss 

function tailored for multi-class classification tasks, such 

as categorical cross-entropy. Performance is assessed 

using standard metrics including accuracy, specificity, 

and F1-score. Cross-validation techniques are utilized to 

ensure robustness and generalizability across different 

subsets of data. 

Through this comprehensive methodology, we aim 

to establish a reliable framework for accurately 

classifying fatigue states based on EEG signals while 

addressing challenges associated with noise and artifacts 

through enhanced preprocessing techniques. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                 (1) 

 

Where TP is the number of true positives (correct 

positive predictions), TN is the number of true negatives 

(correct negative predictions), FP is the number of false 

positives (incorrect positive predictions), and FN is the 

number of false negatives (incorrect negative 

predictions). 

The F1-score is a metric that merges precision and 

recall into a single value. Precision represents the 

proportion of true positive predictions out of all positive 

predictions made, whereas recall is the proportion of true 

positive predictions out of the actual positives in the 

dataset. The F1-score is determined by taking the 

harmonic mean of precision and recall, making it 

especially helpful in scenarios where class distribution is 

imbalanced. The score ranges from 0 to 1, with higher 

values signifying better model performance. The formula 

for calculating the F1-score is as follows. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

(2𝑇𝑃+ 𝐹𝑃 + 𝐹𝑁)
                                                     (2) 

 

Specificity, also known as the true negative rate, 

measures the proportion of actual negatives that are 

correctly identified by the model. It indicates how well 

the model can identify negative instances, 

complementing recall, which focuses on positive 

instances. Specificity is particularly useful when it's 

important to minimize false positives. It is calculated as 

the ratio of true negatives to the sum of true negatives 

and false positives, and its value ranges between 0 and 1, 

with higher values reflecting better performance in 

identifying negative cases. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
                                                            (3) 

 

Model accuracy and model loss are key metrics used 

during training to evaluate a model’s performance on 

both training and validation datasets. Accuracy is 

determined by the ratio of correct predictions to the total 

number of predictions made during training. On the other 

hand, model loss represents the value of the loss function, 

which is minimized to optimize the model’s 

performance. The goal of training a deep learning model 

is to reduce model loss and improve accuracy on 

validation data while avoiding overfitting the training 

data. 

In conclusion, evaluating a deep learning model 

involves considering multiple metrics, such as accuracy, 

F1-score, specificity, model accuracy, and model loss. 

Each of these metrics offers a unique perspective on the 



   Journal of Emerging Technologies and Industrial Applications, Vol. 3 No. 2 (2024) p. 1-8 

 

 

5 
Published by MBOT Publishing 

https://jetia.mbot.org.my/index.php/jetia/index 

model’s performance, helping to identify areas for 

potential improvement. By examining a variety of 

evaluation criteria, one can obtain a more comprehensive 

understanding of the model's strengths and weaknesses. 

 

4. Results and Discussion 

In this section, the results of our research will be 

presented, and a comprehensive analysis of the data 

collected will be provided. First, the descriptive statistics 

were presented, and then the study’s main findings and 

implications were discussed. Finally, the limitations of 

our study will be discussed, and recommendations for 

future research will be provided. 

The application of outlier detection techniques, 

particularly the modified Z-score and its enhanced 

variant, significantly impacted the data distribution. The 

modified Z-score method, illustrated in Fig. 1, was 

effective in identifying outliers, shown as red points in 

the graph. However, it also highlighted a limitation, the 

range of the data extended far beyond typical values, 

with some points reaching values as high as ±300. This 

resulted in a widespread, making it difficult to identify 

outliers in a compact and precise manner. The detected 

outliers (in red) were clustered tightly around the zero 

range, indicating that this method captured only extreme 

values. 

 

 
Fig. 1 – Data distribution of modified Z-score 

 

On the other hand, the enhanced modified Z-score 

(as shown in Fig .2) offered a substantial improvement. 

The data distribution became more compact, as seen by 

the tighter range of values between approximately ±0.6. 

This enhancement allowed for a clearer and more 

focused representation of the data, reducing the influence 

of extreme outliers while maintaining a comprehensive 

detection of abnormal values. The absence of visible red 

outliers in this plot reflects the method’s ability to either 

eliminate or minimize their effect within a controlled 

range. 

 

 
Fig. 2 – Data distribution of enhanced modified 

Z-score 

 

The DBN-LSTM model was implemented to 

classify wells based on the input data features. The model 

utilized a Deep Belief Network (DBN) for unsupervised 

feature extraction, followed by a Long Short-Term 

Memory (LSTM) network for sequence learning. The 

training process employed the Adam optimizer, with 

categorical cross entropy as the loss function, and early 

stopping based on validation loss to prevent overfitting. 

The summary of the model parameter is shown in Table 

1. 

Table 1 - Summary of input features used in the 

DBN-LSTM model 

Parameter Value / Type 

DBN input shape (n_samples, 

input_features) 

DBN hidden layer size [100, 50] 

(autoencoders) 

Dropout rate for DBN 0.4 

LSTM hidden layer size 50 

Dropout rate for LSTM 0.5 

Number of dense layers 1 

Dense layer sizes 2 

Loss function categorical cross 

entropy 

Optimizer adam 

Early stopping monitor='val_loss', 

patience=5 

 

The model achieved an overall accuracy of 82.41% 

on the test dataset, demonstrating strong performance in 

distinguishing between driver fatigue classes. The 

confusion matrix revealed that the model correctly 

identified most of the true positives and true negatives, 

leading to a specificity of 65.10%. This indicates the 

model’s ability to accurately identify the fatigue and non-

fatigue of the driver. 
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Additionally, the F1-score was calculated to be 

84.90%, highlighting the balance between precision and 

recall in the model’s predictions. A high F1-score 

suggests that the model not only performed well in 

identifying the positive class but also maintained low 

false positives and false negatives, ensuring robust 

detection of good classifications. Fig. 1 shows the 

evaluation metrics results before and after the 

enhancement of using a modified Z-score.  

 

 
Fig. 3 - Evaluation metrics before and after the 

enhancement techniques 

 

The model accuracy (Fig. 4) and model loss (Fig. 5) 

plots throughout the training process showed a steady 

decrease in validation loss and an increase in accuracy, 

confirming that the model was learning effectively. The 

introduction of early stopping further contributed to 

model stability by halting training once the validation 

performance plateaued, thereby mitigating overfitting. 

 

 
Fig. 4 - Performance of model accuracy graph of the 

DBN-LSTM model 

 

 
Fig. 5 - Performance of model loss graph of the 

DBN-LSTM model 

 

The proposed DBN-LSTM hybrid model 

demonstrated notable improvements in classifying 

fatigue states based on EEG signals. The use of the 

enhanced modified Z-score method for preprocessing 

resulted in cleaner data, with noise and outliers 

effectively minimized. The model achieved an overall 

accuracy of 82.41%, indicating strong performance in 

distinguishing between different fatigue levels. 

Furthermore, the specificity and F1-score, calculated at 

65.10% and 84.90% respectively, underscore the 

model’s robustness in handling both positive and 

negative fatigue classifications. Comparative analysis 

with baseline models confirmed the superiority of the 

DBN-LSTM hybrid, especially in scenarios involving 

temporal dependencies in EEG data. One limitation 

observed was the model’s sensitivity to small datasets, 

leading to minor overfitting, which could be addressed 

by further tuning hyperparameters or incorporating 

additional regularization techniques. Despite this, the 

results provide a compelling case for the use of the DBN-

LSTM model in real-time fatigue monitoring systems. 

 

5. Conclusion 

In conclusion, this paper presents a successful 

integration of enhanced EEG signal preprocessing and a 

hybrid deep learning model for driver fatigue 

classification. The enhanced modified Z-score technique 

improved data quality, and the DBN-LSTM hybrid 

model exhibited superior performance in recognizing the 

driver’s fatigue states. The results indicate that this 

approach holds promise for real-world applications such 

as driver fatigue monitoring. Future work should explore 

model optimization for large-scale datasets and 

investigate the inclusion of additional physiological 

signals to further enhance accuracy. 

 

Acknowledgment 

The authors extend their heartfelt gratitude to their 

colleagues for their invaluable insights and thoughtful 

reviews, enriching the depth and quality of this work. 



   Journal of Emerging Technologies and Industrial Applications, Vol. 3 No. 2 (2024) p. 1-8 

 

 

7 
Published by MBOT Publishing 

https://jetia.mbot.org.my/index.php/jetia/index 

Their contributions have played a pivotal role in shaping 

and refining the research. 

References 

[1] Abdubrani, R., Mustafa, M., & Zahari, Z. L. (2023, 

March). Enhancement of Morlet Mother Wavelet in 

Time–Frequency Domain in Electroencephalogram 

(EEG) Signals for Driver Fatigue Classification. In 

Advances in Intelligent Manufacturing and 

Mechatronics: Selected Articles from the 

Innovative Manufacturing, Mechatronics & 

Materials Forum (iM3F 2022), Pahang, Malaysia 

(pp. 151-161). Singapore: Springer Nature 

Singapore. 

[2] Fan, C., Huang, S., Lin, S., Xu, D., Peng, Y., & Yi, 

S. (2022). Types, risk factors, consequences, and 

detection methods of train driver fatigue and 

distraction. Computational intelligence and 

neuroscience, 2022(1), 8328077. 

[3] Kayser, K. C., Puig, V. A., & Estepp, J. R. (2022). 

Predicting and mitigating fatigue effects due to 

sleep deprivation: A review. Frontiers in 

Neuroscience, 16, 930280. 

[4] Neubauer, C. E., Matthews, G., & De Los Santos, 

E. P. (2023). Fatigue and secondary media impacts 

in the automated vehicle: a multidimensional state 

perspective. Safety, 9(1), 11. 

[5] Sheykhivand, S., Rezaii, T. Y., Mousavi, Z., 

Meshgini, S., Makouei, S., Farzamnia, A., ... & Teo 

Tze Kin, K. (2022). Automatic detection of driver 

fatigue based on EEG signals using a developed 

deep neural network. Electronics, 11(14), 2169. 

[6] Zeng, C., Mu, Z., & Wang, Q. (2022). Classifying 

driving fatigue by using EEG signals. 

Computational intelligence and neuroscience, 

2022(1), 1885677. 

[7] Peng, Y., Xu, Q., Lin, S., Wang, X., Xiang, G., 

Huang, S., ... & Fan, C. (2022). The application of 

electroencephalogram in driving safety: current 

status and future prospects. Frontiers in 

psychology, 13, 919695. 

[8] Li, R., Gao, R., & Suganthan, P. N. (2023). A 

decomposition-based hybrid ensemble CNN 

framework for driver fatigue recognition. 

Information Sciences, 624, 833-848. 

[9] Mughal, N. E., Khan, M. J., Khalil, K., Javed, K., 

Sajid, H., Naseer, N., ... & Hong, K. S. (2022). 

EEG-fNIRS-based hybrid image construction and 

classification using CNN-LSTM. Frontiers in 

Neurorobotics, 16, 873239. 

[10] He, J., Li, Z., Ma, Y., Sun, L., & Ma, K. H. (2023). 

Physiological and behavioral changes of passive 

fatigue on drivers during on-road driving. Applied 

Sciences, 13(2), 1200. 

[11] Proost, M., Habay, J., De Wachter, J., De Pauw, K., 

Rattray, B., Meeusen, R., ... & Van Cutsem, J. 

(2022). How to tackle mental fatigue: a systematic 

review of potential countermeasures and their 

underlying mechanisms. Sports Medicine, 52(9), 

2129-2158. 

[12] Abdubrani, R., Mustafa, M., & Zahari, Z. L. (2023). 

A robust framework for driver fatigue detection 

from EEG signals using enhancement of modified 

z-score and multiple machine learning 

architectures. IIUM Engineering Journal, 24(2), 

354-372. 

[13] Wu, M., Sun, M., Zhang, F., Wang, L., Zhao, N., 

Wang, J., & Huang, W. (2023). A fault detection 

method of electric vehicle battery through 

Hausdorff distance and modified Z-score for real-

world data. Journal of Energy Storage, 60, 106561. 

[14] Lees, T., Chalmers, T., Burton, D., Zilberg, E., 

Penzel, T., & Lal, S. (2023). Psychophysiology of 

monotonous driving, fatigue and sleepiness in train 

and non-professional drivers: driver safety 

implications. Behavioral Sciences, 13(10), 788. 

[15] Siswoyo, B., Abas, Z. A., Pee, A. N. C., 

Komalasari, R., & Suyatna, N. (2022). Ensemble 

machine learning algorithm optimization of 

bankruptcy prediction of bank. IAES International 

Journal of Artificial Intelligence, 11(2), 679. 

[16] Abdubrani, R., Mustafa, M., Zahari, Z.L. (2024). 

Enhancing Driver Fatigue Detection Accuracy in 

On-Road Driving Systems Using an LSTM-DNN 

Hybrid Model with Modified Z-Score and Morlet 

Wavelet. In: Md. Zain, Z., Sulaiman, N., Mustafa, 

M., Shakib, M.N., Jabbar, W.A. (eds) Proceedings 

of the 7th International Conference on Electrical, 

Control and Computer Engineering–Volume 1. 

InECCE 2023. Lecture Notes in Electrical 

Engineering, vol 1212. Springer, Singapore. 

[17] Pinto-Bernal, M. J., Cifuentes, C. A., Perdomo, O., 

Rincón-Roncancio, M., & Múnera, M. (2021). A 

data-driven approach to physical fatigue 

management using wearable sensors to classify 

four diagnostic fatigue states. Sensors, 21(19), 

6401. 

[18] Jia, Y., Fu, R., Ling, C., Shen, Z., Zheng, L., Zhong, 

Z., & Hong, Y. (2023). Fatigue life prediction based 

on a deep learning method for Ti-6Al-4V fabricated 

by laser powder bed fusion up to very-high-cycle 

fatigue regime. International Journal of Fatigue, 

172, 107645. 

[19] Nair, A., Patil, V., Nair, R., Shetty, A., & Cherian, 

M. (2024). A review on recent driver safety systems 

and its emerging solutions. International Journal of 

Computers and Applications, 46(3), 137-151. 

[20] Kumar, I., Tripathi, B. K., & Singh, A. (2023). 

Attention-based LSTM network-assisted time 

series forecasting models for petroleum production. 

Engineering Applications of Artificial Intelligence, 

123, 106440. 

[21] Ouyang, M., Gao, J., Li, A., Zhang, X., Shen, C., & 

Cao, H. (2024). Micromechanical gyroscope 

temperature compensation based on combined 

LSTM-SVM-DBN algorithm. Sensors and 

Actuators A: Physical, 369, 115128. 



   Abdubrani, R. et al., Journal of Emerging Technologies and Industrial Applications, Vol. 3 No. 2 (2022) p. 1-8 

 
 

8 
Published by MBOT Publishing 

https://jetia.mbot.org.my/index.php/jetia/index 

 

[22] Zhao, L., Li, M., He, Z., Ye, S., Qin, H., Zhu, X., & 

Dai, Z. (2022). Data-driven learning fatigue 

detection system: A multimodal fusion approach of 

ECG (electrocardiogram) and video signals. 

Measurement, 201, 111648. 

 


