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1. Introduction 

In the oil and gas industry, the pivotal role of 

multiphase flow meters in gauging the flow rates of oil, 

gas, and water within pipelines is undisputed. The 

accuracy and reliability of these measurements are 

critical for optimizing production efficiency and 

ensuring operational safety. However, the susceptibility 

of flow meters to faults, including sensor drift, fouling, 

Abstract: In the oil and gas industry, multiphase flow meters are vital for simultaneous 

measurement of oil, gas, and water flow rates, yet their accuracy is often compromised by various 

abnormalities. This study introduces a pioneering solution, a deep learning-based abnormality 

detection method employing a recurrent neural network (RNN). Motivated by the need to enhance 

the reliability of multiphase flow meter readings and facilitate more efficient maintenance and repair 

processes, the research method involves training and testing the RNN model with historical data. 

The results showcase the RNN model’s exceptional accuracy of 99.48%, an F1-score of 99.48%, 

and a recall of 99.48% post-troubleshooting. This heightened precision empowers the monitoring of 

multiphase flow meters, enabling swift identification and repair of abnormalities, ultimately 

preventing costly downtime in the oil and gas industry. Beyond its immediate applications, the study 

underscores the broader potential of advanced machine learning techniques to elevate the accuracy 

and reliability of multiphase flow meter measurements, presenting opportunities for widespread 

industry adoption. 
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and component failures, poses significant challenges, 

leading to inaccurate readings and substantial downtime. 

Swift identification and rectification of these faults are 

imperative to uphold the precision and dependability of 

multiphase flow measurements. 

This research emerges against traditional fault 

detection methods, relying on rule-based approaches 

fraught with unreliability and complexity. To address 

this, there has been a burgeoning interest in harnessing 

the power of machine learning techniques, particularly 

the application of deep learning models like the recurrent 

neural network (RNN) [1]. These models exhibit 

promising capabilities in detecting abnormalities in 

multiphase flow meter data, leveraging their aptitude for 

capturing temporal dependencies in time-series data. 

The primary problem addressed by this study lies in 

the inefficiencies of traditional fault detection methods, 

necessitating a shift towards more advanced and practical 

approaches. Therefore, this research aims to propose a 

deep learning-based abnormality detection method using 

the RNN model to enhance the accuracy and reliability 

of multiphase flow meter measurements. 

The scope of this study encompasses developing and 

evaluating the RNN model for abnormality detection, 

utilizing real-world flow meter data. The research 

methodology involves training and testing the RNN 

model on historical data to learn and identify deviations 

from expected behaviour, ultimately contributing to a 

more efficient maintenance and repair process within the 

oil and gas industry. 

In summary, this research aims to bridge the gap in 

fault detection methods for multiphase flow meters, 

leveraging advanced machine learning techniques to 

improve accuracy and reliability significantly. The 

subsequent sections delve into the intricacies of the 

proposed RNN-based abnormality detection method, its 

implementation, and the empirical evidence supporting 

its efficacy. 

 

2. Related Works 

Previous research has investigated various aspects of 

the topic, ranging from theoretical underpinnings to 

practical applications. This section reviews relevant 

literature to comprehensively understand the field’s 

current state. Specifically, we focus on studies exploring 

the oil and gas industry, and machine learning directly 

relates to our research question. By synthesizing these 

works, we aim to identify gaps in the existing knowledge 

and highlight opportunities for future research. 

Various studies have focused on improving flow 

management, diagnostic tools, and measuring techniques 

in oil and gas production. Flow management for frac plug 

drill-out and flow back has been the subject of recent 

research [2]. Studies have also identified a decline in the 

well productivity index due to wellbore damage [3] and 

used numerical well-testing models to handle complex 

dual-porosity dual-permeability reservoirs [4]. A novel 

method and device for online multiphase flow detection 

based on magnetic resonance has been proposed by Deng 

et. al. in 2020 [5], while a study has shown that 

measuring mixture sound speed downhole can optimize 

multiphase flow meter systems [6]. Another study 

highlights the need to consider input parameter 

uncertainties when evaluating Venturi flow meter’s 

performance [7]. A new flowrate out sensor design that 

requires little maintenance has also been developed by 

Cayeux in 2020 [8]. Yudin et. al. have developed a 

method for calculating pressure distribution in wellbores 

and pipelines by accounting for unsteadiness in 

multiphase flow [9]. Maru et. al. have tackled flow 

management using diagnostic techniques, optimization 

tools, and a new mixing system [10]. Fløisand et. al. have 

also significantly contributed [11]. 

In other areas of research, Yonel et. al. have 

presented a deep learning framework for synthetic 

aperture radar (SAR) imaging [12], while Çavdar et. al. 

have proposed a hybrid model of energy disaggregation 

for non-intrusive load monitoring [13]. Alom et. al. 

briefly survey advances in deep learning, focusing on 

deep neural networks [14]. Kim et. al. have evaluated a 

new MRI reconstruction method named LORAKI [15], 

and Jo et. al. studied deep learning in Alzheimer’s 

disease using neuroimaging data [16]. Lee et. al. have 

proposed a new deep learning method for video rain 

removal using a recurrent neural network (RNN) 

architecture [17], and Zhou et. al. have investigated 

learning-based MIMO-OFDM symbol detection 

strategies using a special RNN called reservoir 

computing (RC) [18]. Priyasad et. al. have presented a 

deep learning-based approach to emotion classification 

using text and acoustic data [19]. Kollias et. al. have 

developed the COV19-CT-DB database for COVID-19, 

consisting of about 5,000 3-D CT scans [20], while 

Bohnstingl et. al. have revisited the incorporation of 

biologically-plausible models into deep learning [21]. 

 

3. Methodology 

The methodology section of this study outlines the 

research design, data collection, and analysis techniques 

employed to address the research questions. This section 

aims to provide a clear and concise description of the 

methods used to ensure the validity and reliability of the 

study’s findings. This section will also discuss any 

potential limitations or weaknesses in the methodology 

and how they were addressed. The methodology used in 

this study was carefully chosen to meet the research 

objectives and to ensure that other researchers could 

replicate the results. 

 

3.1 Data Acquisition 

The data used in this study was obtained from 

multiphase flow meter equipment installed at the 

offshore platform for well-testing activities. The flow 

meter equipment provided measurements of the flow rate 

of oil, gas flow rate, pressure, temperature, and oil 

density at one measurement per second. The data was 

collected for two hours, resulting in 36,000 data points 
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per well. There are five wells for input data, resulting in 

180,000 data points. 

The data was divided into two states, before 

troubleshooting and after troubleshooting. The 

troubleshooting involved checking and repairing any 

malfunctioning components in the flow meter 

equipment. The data collected before troubleshooting 

was used as the baseline data, while the data collected 

after troubleshooting was used to evaluate the 

performance of the proposed deep learning-based 

abnormality detection model. The data was also screened 

for outliers and missing values. Any outliers or missing 

values were removed or imputed using appropriate 

techniques. 

 

3.2 Recurrent Neural Network (RNN) 

This study proposed a deep learning approach for 

detecting abnormality in multiphase flow meter data. 

Specifically, a type of deep learning called recurrent 

neural network (RNN) is well-suited for sequential data 

analysis using Python. RNN can capture the temporal 

dependencies of time-series data and has shown great 

success in various applications, including natural 

language processing, speech recognition, and image 

classification. 

At first,  the data was pre-processed by converting it 

into a time-series format to apply RNN to the multiphase 

flow meter data. The RNN model was built using Keras, 

a popular deep learning library, and trained using pre-

processed data. The model consisted of multiple layers 

of LSTM (Long Short-Term Memory) cells, a type of 

RNN cell that can learn long-term dependencies in time-

series data [22]. 

The RNN model was trained on the data in the so-

called “before troubleshooting” state, and the trained 

model was then used to detect abnormality in the data 

from the “after troubleshooting” state. During 

abnormality detection, the RNN model could predict the 

expected output values based on the input values and the 

learned patterns in the data. Any significant deviation 

from the predicted values was considered abnormal, 

triggering an alert. Overall, using deep learning RNN in 

this study allowed for accurate and efficient abnormality 

detection in the multiphase flow meter data. 

 

3.3 Evaluation Metrics 

Accuracy is a commonly used metric to measure the 

performance of a model. It is calculated as the ratio of 

correct predictions to the total number of predictions 

made by the model. While accuracy is a good measure of 

overall performance, it can sometimes be misleading, 

mainly when the classes are imbalanced. For example, if 

a model has 95% accuracy, but the data is heavily skewed 

towards one class, the model may be simply predicting 

the majority class all the time. Therefore, it is important 

to consider other evaluation metrics besides accuracy. It 

is calculated as below. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
                                                 (1) 

Where TP is the number of true positives (correct 

positive predictions), TN is the number of true negatives 

(correct negative predictions), FP is the number of false 

positives (incorrect positive predictions), and FN is the 

number of false negatives (incorrect negative 

predictions). 

F1-score is a metric that combines precision and 

recall. Precision is the ratio of true positive predictions to 

the total number of positive predictions, while recall is 

the ratio of true positive predictions to the total number 

of actual positives in the data. F1-score is calculated as 

the harmonic mean of precision and recall and is 

particularly useful when the classes are imbalanced. It 

ranges between 0 and 1, with higher values indicating 

better performance. It is calculated as below. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

(2𝑇𝑃+𝐹𝑃+𝐹𝑁)
                                             (2) 

 

Where TP is the number of true positives (correct 

positive predictions), FP is the number of false positives 

(incorrect positive predictions), and FN is the number of 

false negatives (incorrect negative predictions). 

Recall is a metric that measures the ability of a model to 

identify all relevant instances of a class in the data. It is 

calculated as the ratio of true positive predictions to the 

total number of actual positives in the data. A recall is 

particularly important in applications where missing a 

positive instance can have severe consequences, such as 

in medical diagnosis. It is calculated as below. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
                                                            (3) 

 

TP is the number of true positives (correct positive 

predictions), and FN is the number of false negatives 

(incorrect negative predictions). 

The receiver operating characteristic (ROC) curve is 

a plot that shows the trade-off between the true positive 

rate (sensitivity) and false positive rate (1 - specificity) 

of a model across different decision thresholds. AUC 

(Area Under the Curve) is a commonly used metric to 

summarize the ROC curve, with higher values indicating 

better performance. ROC curve and AUC are particularly 

useful when the model operates at different decision 

thresholds or when the classes are imbalanced. 

Model accuracy and model loss are metrics used 

during the training process to assess the model’s 

performance on the training and validation data. Model 

accuracy is calculated as the ratio of correct predictions 

to the total number of predictions made by the model 

during training. Model loss is the value of the loss 

function used to optimize the model during training. 

Training a deep learning model aims to minimize the 

model loss and maximize the model accuracy on the 

validation data while avoiding overfitting the training 

data. 

In summary, when evaluating a deep learning 

model, it is important to consider multiple evaluation 

metrics, including accuracy, F1-score, recall, ROC 

curve, AUC, model accuracy, and model loss. Each 
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metric provides a different perspective on the model’s 

performance and can help identify potential areas of 

improvement. A complete picture of the deep learning 

model’s performance and areas for improvement may be 

seen by considering various evaluation criteria. 

 

4. Results and Discussion 

In this section, the results of our research will be 

presented, and a comprehensive analysis of the data 

collected will be provided. First, the descriptive statistics 

were presented, and then the study’s main findings and 

implications were discussed. Finally, the limitations of 

our study will be discussed, and recommendations for 

future research will be provided. 

The data from well-testing results were identified as 

input features. The input features were loaded from an 

Excel file using Panda’s library and then pre-processed 

using Principal Component Analysis (PCA) for 

dimensionality reduction. The target labels were also 

pre-processed using label encoding and one-hot 

encoding. The RNN model was defined using the Keras 

library, with a SimpleRNN layer followed by two 

dropout layers and two dense layers. The model was then 

compiled using categorical cross-entropy as the loss 

function and the Adam optimizer. Early stopping was 

used to prevent the overfitting of the model. 

The model was trained on the training data using a 

batch size of 32 and a validation split of 0.2. The training 

process was saved in the ‘history’ variable. The 

accuracy, F1 score, and recall were calculated using sci-

kit-learn metrics and printed to the console. The model 

was then used to predict the well types on the test set, and 

the predicted classes were compared to the actual classes 

using the sci-kit-learn metrics. A receiver operating 

characteristic (ROC) curve was generated using the 

predicted probabilities, and the area under the curve 

(AUC) was calculated. 

Table 1 - Summary of input features used in the 

RNN model for well-classification 

Parameter Value / Type 

RNN input shape (n_samples, 5, 1) 

RNN hidden layer size 16 

Dropout rate for RNN 0.5 

Number of dense layers 2 

Dense layer sizes 32, 5 

Dropout rates for dense layers 0.6 

Loss function categorical 

crossentropy 

Optimizer adam 

Early stopping monitor='val_loss', 

patience=5 

 

Finally, the model loss and accuracy were plotted 

over epochs using Matplotlib, providing visual feedback 

on the model’s performance during training. Table 1 

shows the parameters used as input features in the RNN 

model for well classification. 

After troubleshooting the issues of the instruments 

part of the multiphase flow meter, we significantly 

improved our results. Our new model now has an 

accuracy of 99.48%, correctly classifying 99.48% of the 

total instances in the dataset, as shown in Fig. 2. This is 

a substantial improvement over the previous model’s 

accuracy of 88.58%, as shown in Fig. 1. 

 

 
Fig. 1 - Evaluation metrics before 

troubleshooting the multiphase flow meter 

 

 
Fig. 2 - Evaluation metrics after troubleshooting 

the multiphase flow meter 

 

In addition to accuracy and F1-score, we also 

evaluated our model’s recall, which is the percentage of 

true positive cases that our model correctly identifies. 

Our new model achieved a recall of 99.48%, 

significantly improving over the previous model’s recall 

of 88.58%. 
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Our new model’s results significantly improve 

accuracy, F1-score, and recall. These improvements can 

be attributed to our careful troubleshooting process, 

which allowed us to identify and address the issues 

impacting our model’s performance. With these results, 

we can be confident in the effectiveness of our model for 

classifying instances in our dataset. 

A Receiver Operating Characteristic (ROC) curve is 

a plot that illustrates the performance of a classification 

model at various classification thresholds. It is a way to 

evaluate the performance of a classifier by calculating 

the True Positive Rate (TPR) and False Positive Rate 

(FPR) at different thresholds. The TPR is also known as 

sensitivity or recall, and FPR is the ratio of negative 

instances that are incorrectly classified as positive. 

 

 
Fig. 3 - ROC curve of the RNN model 

 

 
Fig. 4 - Performance of model loss graph of the RNN 

model 

In this case, we obtained an ROC score of 1.00 after 

troubleshooting the multiphase flow meter, which is the 

highest possible score, indicating that the model has 

perfect discrimination ability, as shown in Fig. 3. This 

means the model can distinguish between positive and 

negative instances without any false positives or 

negatives. 

A perfect ROC curve means that the model correctly 

classifies all positive and negative instances as negative, 

without making any errors. In practice, achieving a 

perfect ROC score is very rare, but it is a desirable 

outcome to aim for classification tasks. Achieving an 

ROC score of 1.00 indicates that the model performs well 

and can be considered a reliable and accurate classifier 

for the task at hand. 

In machine learning, the loss function is used to 

measure how well the model is performing. The model 

attempts to minimize the loss during training by 

adjusting its weights and biases. In our case, the model 

seems to have achieved a good fit, as evidenced by 

decreased loss throughout training and converging at 

epoch 10. This means the model makes accurate 

predictions and does not overfit the training data. 

Overall, the excellent fit of the loss graph, as shown in 

Fig. 4, indicates the model’s effectiveness in accurately 

classifying the data. 

This study evaluated the model’s accuracy using the 

training and validation datasets, as shown in Fig. 5. The 

accuracy is defined as the percentage of correctly 

classified data. The model was trained for ten epochs, 

and the accuracy improved steadily throughout the 

training process. The validation accuracy plateaued at 

epoch 10, indicating that the model had converged and 

further training would not result in significant 

improvements in accuracy. 

 

 
Fig. 5 - Performance of model accuracy graph of the 

RNN model 

 

The accuracy graph showed a good fit, with the 

training and validation curves following a similar 

trajectory and converging at high accuracy. This 

indicates that the model is not overfitting or underfitting 

the data and can generalize well to new data. These 

results demonstrate the effectiveness of the model and its 

potential for real-world applications. 
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While the proposed deep learning-based 

abnormality detection method using RNN demonstrated 

impressive accuracy in identifying abnormalities in the 

multiphase flow meter, some limitations should be 

considered. Using historical data to train and test the 

RNN model may not fully capture the current conditions 

or variations in the meter’s behaviour over time. Future 

studies could collect real-time data to improve the 

model’s accuracy. The study did not compare the RNN 

model’s performance to other abnormality detection 

methods or discuss the potential costs of implementing 

and maintaining the method in practice. Future research 

could investigate the impact of different parameters and 

features on the RNN model’s accuracy and explore 

developing a predictive maintenance system to further 

improve the method’s performance. Finally, a cost-

benefit analysis of implementing the abnormality 

detection method could help determine if the potential 

benefits of reduced downtime and maintenance costs 

outweigh the initial investment and ongoing maintenance 

expenses. 

 

5. Conclusion 

Based on the results of this study, it can be 

concluded that the proposed RNN model has shown 

promising performance in detecting abnormalities in 

multiphase flow meter monitoring. The model achieved 

an accuracy of 88.58% before troubleshooting, which 

was further improved to 99.48% after troubleshooting. 

These results suggest that the RNN model can effectively 

identify initial problems in the multiphase flow meter 

and guide necessary repairs. Furthermore, after the 

repairs, the RNN model was used to validate the 

performance of the multiphase flow meter. The high 

accuracy, F1-score, and recall of 99.48% demonstrate the 

model’s ability to validate the multiphase flow meter’s 

functioning after repairs accurately. Therefore, the 

proposed RNN model can be a reliable tool for 

monitoring and maintaining multiphase flow meters, 

improving overall performance and reducing downtime. 
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